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Abstract 

A dynamical invariant is presented by the algebraic 

derivation. The physical meaning of the obtaining invariant is 

given for the real system: the forced betatron oscillation seen in 

accelerators and storage rings. 
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1. Introduction 

It has been first obtained by Courant and Snyder/l/ and 

strictly proved by several authors/2/,/3/,/4/,/5/,/6/ that a 

conserved quantity for the time-dependent harmonic oscillator is 

given by 

1 = -!- [ x= + ($x -+q 2(3(S) 
(1) 

where x satisfies the equation 

*. 
x + K(s).x = 0, (2) 

and p(s) is the arbitrary solution of the auxiliary equation 

+BF - $ (;' 4 KCs$= 1 
The conserved quantity for the forced time-dependent harmonic 

oscillator 

.a 
x + K(s)* x = f(s), 

where f(s) is the external force dependent on s alone, has been 

obtained in the form of the "affin" invariant,for a more general 

case including the damping term/T/. But it seems to be difficult 

to obtain any useful informations of motion from a "affin" 

invariant, since the "affin" invariant for the most simple 

system(Z) is the well-known identity 

x, (s)* &s) - ;(,(S).X2(S) = const, (4) 

where x, (s) , x2(s) are arbitrary solutions of Eq. (2) /a/: the 
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identity (4) only means the fact that Eq. (2) is the linear 

differential equation for x. 

So in the present paper we demonstrate that such a system 

also has a dynamical invariant of quadratic type under the help of 

a new auxiliary equation, by a straightforward application of 

dynamical algebra/5/. As an example of the present system, we 

choose the betatron oscillation which is the typical motion of a 

charged particle in accelerators and storage rings. We make clear 

the physical meaning of the dynamical invariant and note the 

relation between the solutions of two auxiliary equations and the 

betatron amplitude function, the equilibrium orbit, which are well 

known in accelerator physics/g/. 

2. Derivation of Invariant 

We can constract easily the dynamical algebra for the Hamiltonian 

H(x,p:s) = 5 h,(s)-r,(x,p), 
tl=l 

following the usual procedure. Here the dynamical algebra is the 

Lie algebra of phase space function jTn , which are closed under 

the action of the Poisson bracket [ , I: 

[ I-In, i-ii1 = pf, CL i-k 
il 

where the C,'.., are the structure constants of the algebra. For 

the Hamiltonian(5), the dynamical algebra consists of K =l, fi=p, 

& =x, r*=+p', &=px,and i-,=42, with the Poisson bracket 
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I r, I j-i I = 0 i=l, ..-- ,6 , 1 l-3 I rs I = 7-3 , 

[ fz, rj 1 = -c I [ /-a I rc 1 = 0 I 

I r,, rw1 = 0 I [ r+ , rs I = - r+ I (7) 

[ j-!,,r;l = -ra I [ rrr Frl = -2Tk, 

[ fi,l'ki = -ra , [76,rW1 =r, , 

[ l-3 I ru 1 = r, . 

The structure constants C l,,may be described by the matrices 

c,*= - - -, - - -. 

J 1. 001 

010) 0 

0001 

DO-II cl 
I 0 1 I 0 
1 10, i IRI 

czm=[-;- ~;zLj c:.m=[-;-;:;J q-;~--~g %-’ 
The time development of a phase-space func.tion I is given--by 

dI aI 
dS= as -c I:?, Cl1 

and the dynamical invariant I is characterized by 

4T 0 ar 
yg= I or sy + c I, H-j =o 

We now look for an invariant, which is a member of the dynamical 

algebra 

T. = n& 71,WTh 

which gives 



c,:,h pa,] F,. = 0 , 

with hi (s)=O , h+(s)=1 , 

h,(s)=0 , hc(s)=O , 

h3(s)=-f(s),and hg(s)=K(s) . 

and therefore the system of linear first-order equations 

-;I, + st (i c,‘, h,(+,=O t-t=1 k:l . 
The coefficients q(s) of the dynamical invariant 

Ads> z 
I= 

jlbk)Z2 
2,Cr) + i\,mp + 713(5)X + 1 p + W)PX +y- 

, 

are solution of the differential equations 

a 
dS 

\ < 
‘ilk oAWa 0 o 0 

ill 0 0 -I A(s) 0 0 

7-3 = 0 KCS) 0 0 PCS) 0 

719 0 0 0 0 -20 
as 0 o 0 KW u -1 
ab, 0 0 0 0 rw 0 

where A(s) is h3(s). 

Setting &= (3,(s), we find 

. 
il+--&L 
. 

ab e - KCS~(tj c 

(121 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

Equating the s derivative of (18) with (17), we finally obtain 

‘p; + 4Kki) & + 2 h/3, = 0 (19) 
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which has the integral 

; (3c *pi - i rjcz + kcs> (3: = c , (20) 

with the integral constant C. 

The solution (20) determines the coefficients ils , AA. Next 

setting 22 =cqs), rewrittinq a+ with @s), and substituting 

(16) into the up-ward equations in (15), we have 

;I, = jsdcrS'dw)ds~ + c', (C':inteqral constant) (21) 

a3 = ACsq?,Cs> - &S), (22) 

&'&) 3 KWdcCS) = dts)pccs, + + A+,[s). (23) 

Hence these determine the dynamical invariant (14). It is 

expressed in the form 

I =y dc(s’>Acs’>ds’ + C’ t d, p + I: I+‘, - d: ] r 

+$I I: 
cc? + ($x - pcpS], (24) 

The arbitrariness implied by the presence of the constants C,C' 

are illusory, as may be verified by making the scale 

transformation 

PCS) = c-$3,, 
dC5) = c-G,, 

,8(s), cl(s) b einq new auxiliary function of s. 

equations which (3(s) and d(s) satisfy are 

-&a? -+@’ + k(s)+ 1, 

. * 
d + KCS) d 

(25-l) 

(25-2) 

The auxiliary 

(26-l) 

(26-2) 
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After discarding a constant multiplicative factor Cf and the 

constant C', we write Eq.(24) in the form 

I=\$ occs',ACs') dr' + o(wp + [A(s)(N)- oi+ t 

3. Example and Discussion 

We have shown that the invariant for the forced 

time-dependent oscillator also exists under the two auxiliary 

equations, one of which is the differential equation for the 

ordinary auxiliary condition. 

It is the betatron oscillation of an off-momentum particle 

that is seen as the forced time-dependent harmonic oscillator in 

accelerators or storage-rings/g/. 1 A? In this case, f(s) is - - 
w PO 

where p(s) is the bending radius and AP is the deviation from 

the momentum P, of the synchronous particle and the independent 

variable s is the coordinate along the design orbit. Accelerators 

and storage rings have necessarily the periodicity corresponding 

to their circumferences. Therefore A(s) and K(s) also have this 

periodicity: 

A(s+L) = A(s) , 

K(s+L) = K(S) , 

where L is the circumference of a machine. The auxiliary Eqs. 

(26-l) and (26-2) will possess the particular periodic solutions. 

In particular, such a solution of Eq.(26-1) is named the betatron 

amplitude function. 
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We can give the invariant I the physical meaning, using the 

concept of the equilibrium orbit (u,v) which is used in 

accelerator physics. In the present case, the equilibrium 

orbit (u,v) are the particular solutions of the canonical 

equations 

du aH 
E = au = v 

/ 
(28-l) 

- k(S)U - A(S) (28-2) 
, 

where the Hamiltonian is described in the form 

H(u,u;s)= $( v= + k(s) U’) + ACs)u . (29) 

Then, the betatron oscillation about the equilibrium orbit is 

studied by the linear canonical transformation 

X= Y + x, (30-l) 

P = v- + P. (30-2) 

This transformation is generated by the second type generating 

function F2 (x,P;s) 

F’cz,P; s) = (u + p>x - d’. (31) 

We have the relevant transformed Hamiltonian %, which contains 

x,p 
2 Cbf,P; ?.I= H(u+)(,~+p) +;$I 

=-- ;I \tz-+kc5)u’+ $ pa+ +r~Xz* (32) 

Further retaining only the terms containing X,P , we obtain the 
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usual un-forced betatron Hamiltonian 

A 

H(X.P; s) = i- ~twXZ * 

This system described in Eq.(33) has the invariant 

t= L 
2 w r ii x+ + ($-5x - ij"'PIZ]. 

(33) 

(34) 

If we rewrite Eq.(34) in the old variables (x,p), we have 

f = $L d-c ($u -pu)'] + &3.-213&l 

+$c-u (2+~),,@+ 4-G [xi+ (&3p-y]* (35) 

Setting d(s)= 4 c t; u - zpv] (36) 

and taking the orbit derivative of d(s), we have the differential 

equation 

. * 
of + Kcrld = po, Ao, (37) 

Eq. (37) exactly agrees with the auxiliary equation (26-2). In 

addition , substituting Eq.(36) into A(s)* (3(s)- 2 (s), we can 

obtain the form 

Ats)(3W i(s) = -i y(s, [-'u (2+ $) * ps+r~ v--J . (38) 

Next if we take the orbit derivative of the first bracket in 

W. (35) , we obtain 

d1, 
ds (39) 

with 
I, z -$,, 

T c 
u++ ($%A -prsnq] 

. 
Futhermore, using the term of d(s), we have 
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(40) 

Therefore we conclude that the invariant (27) is exactly the 

Courant and Snyder's invariant of the homoqenious betatron motion 

around the equilibrium orbit (u,v). Also, the auxiliary 

condition (26-2) is equivalent to the assumption of the particular 

solution (u,v) of Eqs.(28-l), (28-2). 
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Formulae 

@ ------ @ (Greek beta) in Q.(l), (3), (16)) (17), (18),(19) 

(20), (22), (231, (24), (25-l) 

(26-1),(26-2),(27),(34)~(39) 

h ------h (lower case) in Sq.(5), (12), (13) 

f ------ r (Greek gamma and cap.) in Eq. (5), (6), (7), (ll), (12) 

j;L ------ A (Greek lambda) in Eq.(11),(13),(14),(15)ti(18) 

(21), (22) 

d ------ ~1 (Greek alpha) in Eq.(22),(23),(24),(25-2) 

(26-2), (27), (36) -&,(+~-I 

P ------ p (Greek rho) on Section 3. 8 line 

A ------ A (Greek delta and cap.) on Section 3. 8 line 

X ------X (cap.) in Eq.(30-1) -(34) 

p ------P (cap.) in Eq.(30-l)m(34) 


